Extensions 1→N→G→Q→1 with N=C2 and Q=C23.9D6

Direct product G=N×Q with N=C2 and Q=C23.9D6
dρLabelID
C2×C23.9D696C2xC2^3.9D6192,1047


Non-split extensions G=N.Q with N=C2 and Q=C23.9D6
extensionφ:Q→Aut NdρLabelID
C2.1(C23.9D6) = C6.(C4×D4)central extension (φ=1)192C2.1(C2^3.9D6)192,211
C2.2(C23.9D6) = C2.(C4×Dic6)central extension (φ=1)192C2.2(C2^3.9D6)192,213
C2.3(C23.9D6) = C22.58(S3×D4)central extension (φ=1)96C2.3(C2^3.9D6)192,223
C2.4(C23.9D6) = D6⋊C4⋊C4central extension (φ=1)96C2.4(C2^3.9D6)192,227
C2.5(C23.9D6) = C24.15D6central extension (φ=1)96C2.5(C2^3.9D6)192,504
C2.6(C23.9D6) = C24.19D6central extension (φ=1)96C2.6(C2^3.9D6)192,510
C2.7(C23.9D6) = C24.23D6central extension (φ=1)96C2.7(C2^3.9D6)192,515
C2.8(C23.9D6) = C6.(C4⋊Q8)central stem extension (φ=1)192C2.8(C2^3.9D6)192,216
C2.9(C23.9D6) = (C2×Dic3).9D4central stem extension (φ=1)192C2.9(C2^3.9D6)192,217
C2.10(C23.9D6) = (C2×C4).21D12central stem extension (φ=1)96C2.10(C2^3.9D6)192,233
C2.11(C23.9D6) = C6.(C4⋊D4)central stem extension (φ=1)96C2.11(C2^3.9D6)192,234
C2.12(C23.9D6) = D6.D8central stem extension (φ=1)96C2.12(C2^3.9D6)192,333
C2.13(C23.9D6) = D6.SD16central stem extension (φ=1)96C2.13(C2^3.9D6)192,336
C2.14(C23.9D6) = D6⋊C811C2central stem extension (φ=1)96C2.14(C2^3.9D6)192,338
C2.15(C23.9D6) = C241C4⋊C2central stem extension (φ=1)96C2.15(C2^3.9D6)192,343
C2.16(C23.9D6) = D6.1SD16central stem extension (φ=1)96C2.16(C2^3.9D6)192,364
C2.17(C23.9D6) = D6.Q16central stem extension (φ=1)96C2.17(C2^3.9D6)192,370
C2.18(C23.9D6) = D6⋊C8.C2central stem extension (φ=1)96C2.18(C2^3.9D6)192,373
C2.19(C23.9D6) = C8⋊Dic3⋊C2central stem extension (φ=1)96C2.19(C2^3.9D6)192,374
C2.20(C23.9D6) = C24.18D6central stem extension (φ=1)96C2.20(C2^3.9D6)192,508
C2.21(C23.9D6) = C24.20D6central stem extension (φ=1)96C2.21(C2^3.9D6)192,511
C2.22(C23.9D6) = C24.25D6central stem extension (φ=1)96C2.22(C2^3.9D6)192,518
C2.23(C23.9D6) = C24.27D6central stem extension (φ=1)96C2.23(C2^3.9D6)192,520

׿
×
𝔽